Variation Inequalities in Ergodic Theory by Roger Jones

by Roger Jones

DePaul University

Abstract

Let (X, Σ, m) denote a probability space and τ an ergodic and measure preserving transformation from X to itself. Consider the standard ergodic averages $Af(x) = \frac{1}{n} \sum_{k=0}^{n-1} f(\tau^k x)$. These averages converge almost everywhere, and thus it is natural to ask how much they oscillate as the move toward the limit. In particular, consider the operator

$$V_{\varrho}(A_n f)(x) = \sup_{(n_k)\nearrow} \left(\sum_{k=1}^{\infty} \left| A_{n_k} f(x) - A_{n_{k+1}} f(x) \right|^{\varrho} \right)^{\frac{1}{\varrho}}$$

where the supremum is taken over all increasing sequences (n_k) . For each x, this operator measures the degree of oscillation of the sequence of averages $(A_n f(x))$. Whenever this operator is finite we have a.e. convergence. It can be shown that $V_{\varrho}(Af)$ is finite a.e. when $f \in L^1(X)$ and $\varrho > 2$. More generally, we can consider other (less standard) averages, and the associated variation. In particular, let U denote an \mathbb{R}^2 action and consider averages of the form $P_h f(x) = \frac{1}{h} \int_0^h f(U_{t,t^2}x) dt$. In this context the variation operator becomes

$$V_{\varrho}(Pf)(x) = \sup_{(h_k)\nearrow} \left(\sum_{k=1}^{\infty} |P_{h_k}f(x) - P_{h_{k+1}}f(x)|^{\varrho} \right)^{\frac{1}{\varrho}},$$

where now the supremum is taken over all increasing sequences (h_k) of real numbers. It can be shown that this operator will be finite a.e. for all $f \in L^p$, p > 1, (when $\rho > 2$) and hence the averages $P_h f(x)$ converge a.e. as $h \to \infty$. The advantage of the variation operator is that we can (by first proving results for a truncated version) obtain an inequality for which the transfer principle can be applied. Thus we can bring the tools of harmonic analysis directly into play.