
Dan’s Thesis 
 
Every flow can be represented as a flow built under 
a function 
 

 
 
Dan 
 

 
 
function that takes 2 values 
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Theorem: If a 2 point extension of a Bernoulli shift 
is weak mixing, then it is Bernoulli. 
 
A 2 pt extension is: 
 X is a measure space 
 T acting on X is Bernoulli 
 
The 2 pt extension acts on the product of X and 
{0, 1} 
 
There is a set E C X 
 
x, 0 → Tx, 1 x, 1 → Tx, 0 x in E 
x, 0 → Tx, 0 x, 1 → Tx, 1 x not in E 
 
(i.e., the map is either the identity or the flip on 
each fiber) 
 
Dan’s theorem holds for k point extensions and even 
compact extensions. 
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The 2 point extension problem was central. 

 
A major project, based on the then-recent work of 
Jack Feldman, was to develop a theory parallel to 
isomorphism theory for equivalence, instead of 
isomorphism. 
 
2 flows are equivalent if they can be represented as 
flows built under a function with the same base 
(cross section) (variable time change) 
 
2 transformations are equivalent if they are cross 
sections of the same flow 

 
 
(JF): Loosely Bernoulli ↔ Bernoulli 
 LB flows, infinite entropy equivalent B flow 
  infinite entropy 
 LB flows finite entropy equivalent B flow 
 LB flows zero entropy equivalent Kroncke flow 
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Structural Stability (Smale school) 

 
2 flows are “essentially” the same if they are 
equivalent (and the equivalence doesn’t move points 
very much) 
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(Poincaré): “reduce” study of flows to study of 
transformations by taking a cross section 
 
 a flow is LB if its cross sections are LB 
 
Another way to reduce flows to transformations is 
to discretize time 
 

Is a flow LB if its discretizations are LB? 
 
Theorem (Dan): ⇒ the answer is yes 
 
Another theorem of Dan’s is 
 
  if T is LB, then T2 is LB 
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Equivalence theory counterexamples 

 
Feldman constructed a non-LB transformation, J 
 
(Dan): J and J-1 are not equivalent 
 
(Dan) (based on J): 
 

∃ uncountably many non-equivalent 
transformations of zero, positive, 
infinite entropy 
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Dan’s “counterexample machine” 

(for isomorphism) 
 
Construct permutations of a finite or countably 
inifinite set 
 
Theorem (Dan): These lift to mixing transformations 

 
 simplest example: 

T1 and T2 are not isomorphic, but T1
2 and T2

2 
are isomorphic. 
 
T1 comes from the identity on 0,1 and T2 
from the flip 

 
idea: 
construct Tˆ  (acting on X) 

take finite or infinite product of X 
 × × ×1 2 3X X …X  

 Tˆ
∧

 acts on product : 
  apply Tˆ  to each factor and then permute 
 
 only automorphisms :  
  apply Tˆ (i)to each factor, then permute 
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Examples from the machine 

(all T are mixing) 
 
1) T1 and T2 not isomorphic 
 T1

n and T2
n are isomorphic, all n >1 

 
2) T has no roots of any order 
 
3) T has uncountably many 2 pt non-isomorphic  
 factors 
 
4) T has countably many 2 pt factors that are  

isomorphic, but do not sit in the same way 
(2 factors of T sit the same way if there is an 
automorphism of T taking one factor to the 
other) 
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Chris Hoffman extended Dan’s machine so that the 
mixing is replaced by K 
 
 in particular 1, 2, 3, 4 hold for K 

 
Dan had already proved (1) for K 
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What kinds of factors can a B shift have? 
(as transformations then are all Bernoulli:) 
 

2 factors are the same as factors or sit the 
same way if there is an automorphism taking one 
factor to the other 

 
A factor is relatively K if any factor that 
contains it has greater entropy 

 
A factor is relatively Bernoulli if the whole 
transformation is the product of the factor and 
a B shift 

 
Thouvenot initiated the relative study with a 
relative isomorphism theory for factors that are 
relatively Bernoulli 
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Dan is responsible for some of the first relative 
counter-examples. 
 
He classified the relatively finite (compact) factors 
of a B shift. 
 
In particular, all factors with 2 pt fibers sit the 
same way.  And only a finite number of ways that a 
factor with k pt fibers can sit. 
 
In contrast (example 4), he showed that a mixing 
transformation could have countably many factors 
with 2 pt fibers that are isomorphic, but do not sit 
the same way. 
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Hoffman gave a way of going from Dan’s counter-
example machine to a relative counter-example 
machine. 
 
1) F1 and F2 do not sit the same way under T 
 but do under T n n >1 
 
2) A relatively K factor that is not invariant  
 under any root of T 
 
3) Uncountably many 2 pt extensions of factors 

that do not sit the same way as 2 pt extensions 
(the factor could be relatively K) 
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Amenable Groups 

 
Dan developed an isomorphism theory for  

“actions of a group G, where G can be written as 
a skew product of Z with some compact 
metrizable group G .  Thus, G can be written as 
{( , )| , }n g n Z g G∈ ∈  where 

'( , ) ( ', ')=( + ', ( ) ')nn g n g n n g gφ , φ a continuous 
automorphism of G .  In this case we will write 
G = Z G⊗φ .” 

 
Theorem (Dan): any 2 actions of Z G⊗ , where the Z 
actions are Bernoulli and have the same entropy are 
isomorphic. 
 
New phenomena: 
 
The group acting on itself has positive entropy. 
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Back to classifying the relatively compact (finite) 
factors of a B shift. 
 
This rests, in part, on Dan’s isomorphism theorem 
for Z G⊗ . 


