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Theorem (Szeméredi). If a set E C 7Z has
positive upper density, then it contains arbi-
trarily long arithmetic progressions.

Theorem (Furstenberg).

Let (X,X,u,T) be a (b.m.p.t.) system, and
Ae X with u(A) > 0.

Then for any k > 1 the liminf when N — oo
of

1 N-1

= > p(ANT"ANT 2"AN---NT " A)

n=0

IS positive.
Question. Is the liminf actually a lim?

Question. Convergence in L?(u) of

1 N-1

= SN Tt Ty TRYf . (AP)
n=0



THE RESULTS

History of the problem of convergence of (AP):
k= 1. Ergodic Theorem.

k = 2. Furstenberg.

k arbitrary, weak mixing system : Fursten-
berg.

k = 3: Conze & Lesigne (assuming total er-
godicity; H&K in general)

Theorem 1. Let (X, X,u,T) be a system,
k > 1 be an integer and let f;, 1 < j < k,
be k bounded measurable functions on X.
Then the averages

1 N-1
~ ST T fy - TR, (AP)

n=0

converge in L?(u) when N — 4.

Open problem: Is a similar result valid for
commuting transformations 17,15, ..., 1T} Sub-
stituted for T, 7T2,...,Tk?



Polynomial averages

Furstenberg’'s Theorem was generalized to
polynomial averages by Bergelson and Leib-
man. It is natural to ask for similar general-
izations of Theorem 1.

Furstenberg and Weiss : Convergence of

Theorem 2. Let (X, X,u,T) be a system,

k> 1 and fi,fo,...,fr € L=®(u). Then for
any integer polynomials p1(-),p2(:),...,pr(+)
the averages

N

1
% L O M OF S S DN
n=0

converge in L?(u).



CHARACTERISTIC FACTORS

In the sequel, (X, X,u,T) is an ergodic
system.

We use the word ‘factor’ with two different
but equivalent meanings:

e A factor of X is aT-invariant sub-o-algebra
of X.

e Let (Y, )V,r,S) be a system.
A map w: X — Y is a factor map if
™u=v and Sor=mwoT.
In this case we also say that Y is a factor
of X.

These definitions coincide up to the identifi-
cation of Y with #—1(}).



Let Y be a factor of X.
We say that Y is a characteristic factor for
the convergence of the averages

N-1
1
= N T T2y TR, (AP)
n=0
if the difference between these averages and
the same averages with E(f1 | V) substituted

for f1, ..., E(fi | V) substituted for f:

1 N_IT"E T+ E

Nngo (1| e TE(f; | D)
converge to 0 in L2(u).
This means that the averages (AP) converge

to 0 whenever E(f; | V) = 0 for at least one

1.



THE STRATEGY

1. Find a characteristic factor for the con-
vergence of the averages (AP).

2. Give a ‘good’ description of this factor.
This means, identify it with a system with
a known ‘geometric’ or ‘algebraic’ struc-
ture.

3. Show convergence for this factor.



BUILDING CHARACTERISTIC FACTORS

A standard method for finding characteris-
tic factors consists in using VVan der Corput’s
Lemma several times.

Van der Corput’s Lemma.
Let H be a Hilbert space and &,, n >0, in H
with ||&n|| < 1 for every n. For h > 0 define:

1 N-1
= lim sup‘— & 3
Yh N Nn§o< n—+h n>
T hen
IimsupH— Y &l <limsup— ) .
N 1IN = H H ;=
First idea:

We ‘forget’ the original convergence problem
and build a factor by a procedure that mimics
successive uses of VdC's Lemma.

This factor will be ‘automatically’ character-
istic.



Some seminorms

We build a sequence of seminorms on L°°(u)
such that for every f € L°®(u):

L Iflle = |J fdy)

2. For every k£ > 1,

H-1
ok+1 : 1 B oen2k+1
= |lim — T )
Il +1 g hgo If-T7fll%
Furthermore:

o lfllr <Al < < lflle < -+ < IS lloo-

o If X is weakly mixing then ||fllz = £l
for every k.



Some factors

By using these seminorms we build factors
Zip(X) = Zy, k> 0, of X with:

o For f € L°(u), we have E(f | Z;) = 0O if
and only if || fllx4+1 = O.

Furthermore;:

e Zp(X) is the trivial factor of X.

e T he sequence of factors is increasing:

Zo<—Z1<—---<—Zk<—Zk_|_1<—---<—X.

o If X is weakly mixing then Z,(X) is the
trivial factor for every k.
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These factors are characteristic

Lemma. If || f1]|co,- - -,

| fr|loc are < 1, then

for{=1,...,k we have
1 N-1 5 .
imsup|-- Y T T2y TR < Al
N Nn=0 2

Corollary. The factor Z;_q is characteristic
for the convergence of the averages

1 N-1

N N T -T2y TR, (AP)
n=0
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Proof. By induction. We assume it is true for
k. Define &, = T"f; - T?"fy-.-Th+Lng o
We assume that ¢ > 1 (the case £ = 1 is
similar). We have

1 N—-1
‘an::o<§n+h7§n> —
] N=1k+1 |
\ [T S | TU—””(fj-Tfhfj)du\
n=0 j=2
< |15 ] rmong, oy
N =0 j=2 ! 72

Induction hypothesis: v, < £|lfs - T £/l .

L H-1 g tH-1
— > v <Ll— > |fe-T"fellx
H 120 tH =4

and we conclude by using VdC and the defi-
nition of the seminorm | - ||x4-1- L]

12



Building measures

By induction, we build a measure ulkl on
Xk .= x2" invariant under T* := Tx...xT

(2% times).

o Let ZI¥ be the invariant o-algebra of
(XU I8 7lk]y,
Then plkt1l s the relatively independent
square of ulkl over Ikl

Explanation:

We identify XIF+t1] with X%l x X1kl and write
X — (X/,X”)

for a point of XIk+t1l with x/ x" € xI*l.

When F,G are bounded functions on X ¥l

/ I [k+1]
[ ey FOO GG dulE ()

._ [k] K1y 7, [¥]
= [ g B 1T E@G | 7H) dy
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The points of X*¥ are written

X = (:ce L€ € {O,l}k)

Lemma. For f € L*°(u),

1A = [ I F@duo) .

(%]
X e€{0,1}k

Corollary. || - || is a seminorm.

By ergodicity:
710 is trivial, ult) = ux p and || f]|; = ‘ffdu‘.

14



The Kronecker factor

Let (Z,m,S) be the Kronecker factor of X:

It is the factor of X spanned by the eigen-
functions.

Z IS a compact abelian group.

m IS the Haar measure of Z.

The transformation S : Z — Z is a rotation:

Sz = az for some fixed element a of Z.

{a™ :n € Z} is dense in Z.

For f € L>®(u) we write f =E(f | Z).
The ergodic decomposition of ux u for T'x T
IS

X op = /Zusdm(S)

where

/XXX f(x)g(y) dus(z,y) :=/Zf(z)§(sz) dm(z) .

15



Computation of pl2l, || - |l and 23

We have ,LL[Q] = /Z,us X psdm(s).

1713 := [rerefe sl
— /Z3 f(Z)f(SZ)f(tz)f(stz) dm(z) dm(s) dm(t)

Corollary. || f|l2 is the £*-norm of the Fourier
Transform of f.

Il - ll> is @ seminorm.
T he factor Z1 is the Kronecker factor.

16



A useful Lemma

Let

(k] _ %]
0 / o dPp(w)

be the ergodic decomposition of ul*l for 11,
We can carry out the same construction with
(xk ,lEl TlEly substituted for (X, u,T).

Lemma. For any ¢ > 0,

et — /

4]
[k]) p
Q, <Hw d k(w) -

Proof. For ¢ = 1 this is the definition of
’u[k-l-ll_

Then by induction. [ ]

For k=1 we have €21 = Z, P1 = m and
k
plh ] = /Z(us)[ ]dm(S) :

17



Second idea:
Use a ‘geometric’ point of view.

We identify {0, 1}*¥ with the set of vertices of
the Euclidian cube of dimension k.

We use geometric words like side, edge, ver-
tex. .. for subsets of {0, 1}%

A point x of X3l
and the side {100,101,110,111}

L011 L111

7001 101

£110

000 100 15



The symmetry group of the k-cube is the
group of permutations of {0, 1}* arising from
the isometries of R* preserving the cube.

Lemma. The measure pl¥l is invariant under
the symmetry group of the k-cube.

Let o be a face of the cube.
The side transformation T + xkl _y xIk] js
given by:

(rix). = {T‘“ Teca
Te if e ¢ «

Lemma. The measure pl¥l is invariant under
the side transformations.
It is ergodic under the joint action spanned
by these transformations.

19



The point Tf]x
for « = {100,101,110,111}

011 Tr111

001 Txr101

Tx110

20



Building the factors

Let 0 =00---0 ¢ {0,1}*. x[kl = x x x2"-1.
We consider a point x € XI*¥ as a pair:

k
x = (zg,X) With zg € X, x € X2 1.

Consider the transformations T(y“], for all faces
a not containing 0.

Lemma. A function on X*l s invariant under
these transformations if and only if it depends
on xqg only.

Let B c X2"-1 pe invariant under these trans-
formations. Then there exists A C X with

14(zg) = 15(%) for plflae. x e xl+

21



Definition.
A subset A of X belongs to Z;_4 if and only

if there exists B c X2"~1 with

14(zg) = 15(%) for plfl-a.e. x € xIk

Lemma. The 2%-joining ul*! of X is relatively
independent with respect to its projection on
k]
AL
k—1

Corollary. For f € L*°(u),

Ifllx =0 <= E(f | Zx,_1) =0 .

The factors are built!

22



Review

We want a factor Y so that the average con-
verges to 0 in L2(u) when E(f; | ) = 0 for
some 1.

We constructed factors
o214 L 1+ L4+ X
of X that work for arithmetic progressions.

Zo is the trivial factor of X.
Z1 is the Kronecker factor of X.

Definition.
X is a system of level k if Z;,(X) = X.

For every X, Z,(X) is of level k.
Therefore, we only have to describe the sys-
tems of level k.

We know:
X is of level O <= X is trivial.
Systems of level 1 are ergodic rotations.

LLater we show that systems of level 2 are
Conze-Lesigne systems.

23



Nilpotent groups

For g, h in @ group G, write [g, h] for the com-
mutator g~ 1h~1gh of g and h.

If A,B C G, write [A, B] for the subgroup of
G generated by {[a,b] : a € A,b € B}.

Define
G = @G and V1Tl =[G,cU)] for j > 1.

G is nilpotent of level k if G(:+1) = {1},
Definition.
If G is a k-step nilpotent Lie group and N\ is a

discrete cocompact subgroup, then the com-
pact space X = G/N\ is a k-step nilmanifold.

G acts on G/A by left translation

Ta(fU/\) — (a:v)/\ .

24



Definition.

There is a unique probability measure p on
X that is invariant under the action of G by
left translations, called the Haar measure.

Fix an element a € G.
The system (G/N\,G/N\,Tq, ) is a k-step nil-
system and T, is a nilrotation.

In Lecture 3, we show:

Theorem. A system of level k is an inverse
limit of k-step nilsystems.

Theorem. Assume that G is spanned by the
connected component of O and a.

Then the nilsystem G/ is ergodic if and only
if the action of a on G/GA s ergodic.
In this case, the Kronecker factor of X s
G/GA,

Follows from results of Lesigne.

See also Leibman.
25



Typical example of a non-abelian
two-step ergodic nilsystem.

G i1s the Heisenberg group

l 1 x>
G = 0O 1 T3 rx; €ER
O 0 1

with matrix multiplication.
It is two-step nilpotent.

1 29 2o 1l a7 a-
N\ = O 1 23|:2,€4) ;a=]|0 1 a3
O 0 1 O 0 1

where a1,a3 € R are rationally independent
and as € R,

G/N\ is compact and T, is a nilrotation on
G/ .

We have G/G(2)A ~ T2 and rotation on T2 by
(a1,a3) is ergodic. Previous theorem gives T,
IS ergodic and Kronecker is factor induced by
functions on x4, x3.

26



Convergence on nilmanifolds

Theorem. Let X = G/AN be a nilmanifold
with Haar measure p and let ay,...,ay be
commuting elements of G.

If the group spanned by the translations
ai,...,ay acts ergodically on (X,u), then X
is uniquely ergodic for this group.

Parry proved this for one translation. Same
proof works for commuting. Proof based on
argument of Furstenberg. Also Leibman.

27



Theorem. Let X = G/N\ be a nilmanifold and
T : X — X be a nilrotation. Then for any
continuous function f on X, the averages

1 N-1

N ngo f(IMx)

converge everywhere on X as N — oo.

Special case of theorem of Shah.
Lesignhe proved this when G is connected.
Leibman proved general case.

Idea: For each z € X, the closed orbit ¥ =
{T"x : n € Z} is minimal by distality. Give Y
the structure of a nilmanifold and use Parry
result that a minimal nilmanifold is uniquely
ergodic.

28



Corollary. Foranyk € N, a1,...,a; € G, z1,...,
xp € X and continuous functions

fi1o--5 Jh
| ] N-1 i i
NE)T_OO I ngO filajz1) ... fr(apzy)
exists.

Proof. Apply theorem to the element a =
(a1,...,a;) of the group G¥ at the point z =
(z1,...,xz) € Xk = GF/NF with the continu-
ous function fi(x1)... fr(z). [ ]

Corollary. Convergence for arithmetic progres-
sions in L?(w).

Proof. Characteristic factor is an inverse limit
of k — 1-step nilsystems. Use previous corol-
lary with a; = a* for ¢+ = 1,...,k to prove
this for a nilsystem and by density of con-
tinuous functions, have result for the inverse
limit. [ ]

29



Characteristic factors for polynomials

We consider

1N1

p1(n) p2(n) .pe(n)
NiT—ooN Z T f1-T foro TP fy

Same factors work for polynomial averages:

Theorem. Assume that {p1,...,p¢} are non-
constant integer valued polynomials so that
p; — pj Is not constant for all i 7 j.

T here exists an integer k > 0 so that for
any ergodic system (X, X, u,T) and functions
fi,---, fr € L°(u), Z;,(X) is characteristic for
the associated polynomial average.

This means: if E(fm|Zk(X)> = 0, then

| M+N
SUDH— Z Tp1(n)f1 'Tpf(n)ﬁHL?(u)_)O

’n,_

as N — +oo.
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Convergence for polynomials

Theorem (Leibman).

If (X,u,T) is a nilsystem,

p1,--.,Pp are integer valued polynomials

and f1,..., fp are continuous functions on X,
then for all sequences {M;} and {N;} with
N; — +o00, the averages

] Mi+N;-1
— Y 5 (TP ) L £ (TP g)
Ni n=M,;

converge for every = € X.

Corollary.
Convergence for polynomial averages.

Proof. The characteristic factor for a poly-
nomial average is an inverse limit of k-step
nilsystems for some k£ and Leibman’s Theo-
rem gives result for nilsystems. By density,
pass to the inverse limit. [ ]
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Averages along cubes

2-dimensional cube:

f@) f(T™) (T 2) f (T ")

Theorem (Bergelson). Let (X, X,u,T) be
an invertible measure preserving system.

Then if f1, fa, fa € L°(un),

1 N—-1
yim s ] n;:O F1(T"x) fo(T™x) f3 (T M)

exists in L?(u).

Also same result over interval [M, N], as N —
M — +o0.

32



3-dimensional cube;

F(@) F(T™z) fF(T"z) fF (T ")
F(TPz) f(T™FPg) f(T P f (T T Py)

Theorem. Let (X,X,u,T) be an invertible
measure preserving probability system and let
i, 1 <3 <7, be7 bounded measurable func-
tions on X. Then the averages

. N-1
N3 S A(T™) fo(T"2) f3 (T )

m,n,p=0

fa(TPz) fs(T™VPx) f (T TPx) f7(T™ T TPg)

converge in L?(u) as N — “+o0.

Again, same result holds over intervals [M, M'],
[N,N], [P,P], as M' — M,N' — N,P' — P —
—+00.

More generally, this theorem holds for cubes
of 2k — 1 functions.
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General averages along cubes

Fore=e;1...€, € {0,1}* and n = (nq,...,n) €
Z~,

e-n=61n1-|—62n2+----|—eknk
0 denotes the element 00...0 of {0,1}*.

Theorem. Let (X,X,u,T) be an invertible
measure preserving probability system, let k >
1 be an integer and let f., ¢ € {0,1}%\ {0},
be 2k — 1 bounded functions on X. Then the
averages

IR SR | (G

ne[0,N)* ec{0,1}*
e#0

converge in L?(u) as N tends to +oc.

Same result for averages with n € [M1, N1) X
- X [Mk,Nk)1 as N1 — My, ..., Np — M; —
—+00.
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Lower bounds

Restricting to the indicator function of a mea-
surable set:

Theorem. Let (X,X,u,T) be an invertible
measure preserving probability system and let
A e X. Then the limit of the averages

k
1 .
M5 X w( N 7174
i=1""* "t pnie[Mq,Nq1) ec{0,1}F

exists and is greater than or equal to ,u(A)Ql€
when N1 — M1, No — Mo, ..., N, — M, tend to
—+00.

Corollary. For every 6 > 0 the subset

{n ezt iu( ) TMA) > p(a)? - 5}
ec{0,1}k

of 7Z* is syndetic.
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Characteristic factors for cubes

Theorem.

The factor Z,,_1(X) is characteristic for the
L?(u) convergence of the k-dimensional cu-
bic averages.

This means:
This average converges to 0 in L2(p) if
]E(f€|Zk_1(X)>: 0 for some € € {0,1}*\ 0.

Proof of L2 convergence relies on first under-
standing convergence for numerical averages:

1 N-1

D / [ feoT*"dpu .

ni,..,np=0" ec{0,1}k
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Limit for integral of 2% terms

We have reduced to the case that:

X = G/N is a k-step nilmanifold where
(G Is k-step nilpotent Lie group;

A\ 1s discrete cocompact subgroup.

Recall definition of the measure wpl*l on
x[k = x2*° Defined inductively with

e ul**1lis the relatively independent square
of ulkl over 7l where Zl*l is the invariant
o-algebra of (XKl ylkl Ikl

For this set up, the measure plkl on X[kl has a

simple description: it can be identified with

the Haar measure on some submanifold of
k

X2

37



Definition. Let G,Ek_]l be the subgroup of GlX]
spanned by

{g([xk] g€ G and a is a k—1 face of {0,1}*} .
Called the side subgroup.

Define X; to be the nilmanifold

X =G /A nGlH)

embedded in X!*] in the natural way.
Proposition. pl*l is the Haar measure of X;,.

The transformations T&k], where « is a side of
{0,1}*, span an ergodic action on (X*], %]y,
Thus this action on X!*l is uniquely ergodic.

Theorem. T he averages
1 N-—1

D3 / [ feoT“™dpu .

ni,..,np=0" ec{0,1}k
converge to

[ TI fee)du™x) .

ec{0,1}k

38



L2 Convergence for cubic averages

Every x € X* is written x = (zg,%) with
rg € X and X € x2"-1_ WWe partition X} ac-
cording to the coordinate 0. For =z € X,

My = {5‘: e X2 1. (2,%) ¢ Xk} .

For almost every x € X, M, is a nilmanifold
uniquely ergodic for the action spanned by
the transformations T(yf] where « is a side of
{0,1}* not containing 0. We write p, for its
Haar measure

We deduce the L2 convergence of the cubic
averages with 2¥ — 1 terms to

Jw T feoadde) .
e€{0,1}*\{0}
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We recall some notation
Let (X,u,T) be an ergodic system.

x[k .= x2° Ppoints of X¥ are written
X = (xe ; 66{0,1}k> :

ulklis a measure on X1*1 invariant under Tkl
7kl is the invariant o-algebra of (X &l k] Tlk]y.
For f € L>®°(u),

e

X [K]

1 f(ze)dulFl(x) .

ec{0,1}k
The factor Z; of X is characterized by: for
feLe(u),

E(f | Z2;) =0 <= | fllxg+1 =0 .

The factors Z; form an increasing sequence:

2o 21 L Lggq— X

Zo Is the trivial factor,
Z1 is the Kronecker factor of X.

40



Definition.
X is a system of level k if Z;,(X) = X.

For every X, Zp(X) is a system of level k.
Thus we have to describe systems of level k.

X is of level 0 <= X is trivial.

Systems of level 1 are ergodic rotations.
We shall see later that systems of level 2 are
Conze-Lesigne algebras.

Theorem. A system of level k is an inverse
limit of k-steps nilsystems.

How to find the group?

Idea:
We consider the group of transformations of
X preserving the ‘cubic structure’.

41



Notation.

When =z — g - x is a transformation of X and
a C {0,1}%, we write i xTkl 5 x#] for the
transformation defined by

R
Te else.

We use this notation for ‘sides’, vertices’,. ..
of {0,1}*.

We know that for every k£ and every side «

of {0,1}* the measure ul*l is invariant under
k]

Tl

42



The transformation g([f]x
for « = {100,101,110,111}

L011 g -T111

L001

g-2101

g 2100
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We recall that Z!*! is the invariant o-algebra
of (X[k]“u[k],T[k])_

Lemma. For a measure preserving transfor-
mation x — g-x of X, TFAE:

1. For any k and any side a of {0,1}*, the
transformation g1 of X[¥] jeaves the mea-
sure ulkl jnvariant.

2. Same as 1. plus: and g([f] maps the
o-algebra TI¥l to itself,

3. For every k, the transformation glkl of
X%l jeaves the measure ulkl invariant and
acts trivially on the o-algebra T!¥l.

Remark. By symmetry, we can substitute
‘some side’ for ‘any side’ in 1. and 2.
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Definition. G = G(X) is the group of mea-
sure preserving transformations of X with these
properties.

Properties.

e G is a Polish group.

e T €@

o If 'S = ST then § € ¢.

e If X is a compact abelian group and T an
ergodic rotation, then ¢ = X acting on itself
by translations.

o If g € G then for every k, it leaves Z; invari-
ant.

e If X — Y is a factor map and g € G(X)
leaves )Y invariant, then the transformation
induced on Y belongs to G(Y).

The inverse problem: Can a given h € G(Y)
be lifted to an element of G(X)7
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Commutators
We recall that [g,h] ;= ¢~ 1h~1gh.

Remark. For g,h: X — X and o, € {0, 1},

o6 1] = [9:Mlans

We recall that g(1) = g and g(it1) = [g() @],

Lemma. Let g € ¢U) and a a face of dimen-
sion k —j of {0,1}F .

Then the measure u[k] is invariant under g[k].
Moreover this transformation maps the o-
algebra Tl*l to jtself.

Proposition. If X is a system of level k then
g Is a k-step nilpotent group.
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Proof of the remark.
a=4{100,101,110,111}

B8 = {000,100,001,101}
v={100,101} = an§.

We check that [g([f],h[;]} — [g,h][f]

Id

S
g
|

11

ngd]zzkj

®000 -



Notation.

Let U be a group and p:Y — U a map.
Define Akp: YIEl 5 U by

AFp(y) = 11 P(ye)(_l)Ma
ec{0,1}k

where || = €1 + - + €.
Examples: Ap(y) = p(yo) - p(y1) ™ .
A2(p)(y) = p(y00)p(¥o1)  tp(y10) to(y11)

With additive notation, Ap(y) = p(yo) —p(y1).

Definition. Let (Y,v,S) be an ergodic sys-
tem, U a group, and p:Y — U a map.

We say that p is a cocycle of type k if Akp ;
Yl 5 U is a coboundary of (YIkl ylkl glkly.

This means that there exists F : Yk 5 U
with

NFp(y) = F(SHly) . F(y)~! (WF-ae)
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A cocycle of type 0 is a coboundary (p =
foT-f~1 for some f).

A cocycle of type 1 with values in S! is a
quasi-coboundary (the product of a constant
and a coboundary)

Relations between consecutive factors

Proposition. Let X be a system of level k.
We write (Y,v,S) for the factor Z;._1.

Then X is an extension of Y by a compact
abelian group U:

X=Y xU; T(y,u) = (Sy,p(y)u) .

This extension is given by a cocycle p .Y —
Uof type k.
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Steps of the proof.
1) X is an isometric extension of Y.

We can write X =Y x G/H, where G is a
compact group and H a compact subgroup.
There is an obvious action of G on X.

2) For g € G and o« an edge of {0, 1}k, ggc]
acts trivially on TI¥l.

3) For g € G, the associated transformation
of X belongs to the center of G(X).
In particular G is abelian.

4) For x € U, we define f(y,u) = x(u) and

Fx)= ] f(xe)(—l)lel.

ec{0,1}k

We have || fllz+1 7 O, thus E(F | ZIFl) £ 0.
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Cocycles of type 2 and the Conze-Lesigne Equation

Proposition.

Let (Z,m,T) be an ergodic rotation and let
p: Z — T be a cocycle of type 2.

Then for every s € Z there exists f : Z — T¢
and ¢ € T¢ with

p(sz) —p(z) = f(Tz) — f(z) +c. (CL)

The transformations of Z x T¢ of the form

(z,u) = (s2,u+ f(2))
where s, f, ¢ satisfy (CL) form a group G,.

e G, is 2-step nilpotent and locally compact.
e The action of G, on Z x T? is transitive,
ergodic and Z x T¢ = G, /74

e Gy is a Lie group if Z is a Lie group.

Lemma. T here exist a Lie quotient Z' of Z
and a cocycle p' cohomologous to p and mea-
surable wrt Z’,

The countability Lemma. Up to the ad-
dition of quasi-coboundaries there exist only
countably many cocycles of type 2 on Z.
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Systems of level 2

Let X be a system of level 2.

X is an extension of Z = Z1(X) by a compact
abelian group U, given by a cocyclep: Z - U
of type 2.

If U is a torus, then the groups G(X) and
Gp are actually the same and thus G(X) acts
transitively on X.

Lemma.lIf Z is a Lie group and U is a torus,
then X is a 2-step nilsystem.

Lemma. U is connected.
Thus U is an inverse limit of tori.

Proposition. Every system of level 2 is an
inverse limit of 2-step nilsystems.
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We go back to the general case
and we summarize.

L1 Zo4— L 1+ L+ -+ X.

e /41 is the Kronecker factor of X.

e Z; is an extension of Z;,_1 by a compact
abelian group Uy.

e [ his extension is given by a cocycle

Pr L1 — U of type k.

This means that there exists F}, : Z,Lk_]l — Uy,
with
AFp. = F o Tlk] . Fk_l (ulFl-a.e)

e U5 is connected.

e /> is an inverse limit of a sequence of 2-
step nilsystems.

e When Z is an ergodic rotation there ex-
ist (up to quasi-coboundaries) only countably
many cocycles Z — T¢ of type 2.

We generalize the last three properties for
higher levels.

The proof by induction uses a |lot of technol-
ogy of cocycles plus a step ladder.

53



T he step ladder

Let (X, u,T) be a system of level k.
We recall the definition of the measure us for
s € 4.

For fo, f1 € L*(n),
/XXX fo(zo) f1(z1) dps(zo, x1)
= | E(fo | 2)(s2)E(f1 | 2)(=) dm(=)

The ergodic decomposition of ux u for T'x T
IS

v ><u=/Zusdm(8) :

We write (Y,v,S) for Z;_1(X).

X and Y have the same Kronecker factor Z.
We define the measures vg, s € Z, in a similar
way.

For almost every s € Z we write

XS — (XXX,/,Ls,TXT) . YS — (YXY,Vs,SXS)

and we study the relations between these sys-

tems.
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We recall that X is an extension of Y by a
compact abelian group Uy, given by a cocycle
pr - Y — U of type k.

Proposition (The step ladder).

e X iS a system of level k

e Y iS a system of level kK — 1.

e X is an extension of Ys by Uy x U, given
by the cocycle (yo,y1) — (pr(yo),pr(y1)) of
type k.

e 7;._1(Xs) is an extension of Ys by Uy, given

by the cocycle (yo,y1) — pr(yo)pr(y1)~t of
type kK — 1.

Ljo— >(Xs) <_ Ys Zk 1(Xs) <_ Xs
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L1 Zo4— L 1+ L4+ -+ X .
Z; i1s an extension of Z;_1 by U; .

Lemma. For each i, the compact abelian group
U,; is connected.

Definition. A system X of level k is toral if
the compact abelian group Z1 is a Lie group
(i.e. admits a torus as an open subgroup)
and each Z; is a torus.

Proposition. Every system of level k is an
inverse limit of toral systems of level k.

The countability Lemma can be extended
only in a weaker form.

Lemma. Let X be an ergodic system, (2, B, P)
a Sstandard probability space, and w +— py a
measurable map with values in the set of co-
cycles X — T¢ of type k.

Then there exists Qp € B, P(S2g) > 0, such
that p. is constant on Qg (up to quasi -
coboundaries).
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T heorem.
Every toral system of level k is a nilsystem.

By induction. Assume it holds for k£ — 1.
Let X be a toral system of level k.

We write (Y,v,S) for Z;_1(X).

Y =G/IN, with G = G(Y).

For y =k, k—1,...,2,1 we show that every
element of GU)(Y) can be lifted as an ele-
ment of G(X). The lift is built by solving a
family of functional equations.

Recall that X is an extension of Y = Z;_1(X)
by a torus T¢. This extension is given by a
cocycle p:Y — T¢ of type k.

There exists F : Y1k — T with

ulkl-a e.
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The functional equations

For ¢ < k, every face a of dimension ¢ of
{0,1}* defines a projection =¥l x[*] — x4,

Lemma. For j < k and g € GU(Y) there
exists ¢g . Y — T such that, for every face «
of dimension k+ 1 — j of {0,1}%,

Fogid)—g=aM1g omd . (4¥)

ulkl-ae.

The proof of this Lemma uses all the ma-
chinery. ..

Let ¢4 be given by the Lemma.
The transformation (y,u) — (g-y,u + ¢g(y))
of X =Y x T¢ is a lift of g in G(X).

We deduce that G(X) acts transitively on X.
It is easy to check that G(X) is a Lie group.

The theorem follows.
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Idea of the proof of the Lemma. Assume
it holds for j + 1. For g € GU) we define

O0g = ¢p-1p-110Tg+pog—p.

Let 3 be a face of dimension k —j of {0, 1}*.
From (*) and (**) we get

k k i k
(Fogé ]—F)OT[k]—(Fogé ]—F) = AF 39907%] :
It follows that 64 is a cocycle of type k — j.

By the countability Lemma there exists A C
G, of positive measure, such that 6, —6;, is a
quasi-coboundary for g,h € A:

For g,h € A there exist 0 : Y — T¢ and ¢ € T¢
with 83 — 0y, = 00T — 0 + c.

By (**) the map

F o (gh_l)[ﬁk] —F-AFIon 1o wék] :

is invariant under T'*1,

It follows that the relation (**) is satisfied

with gh~! and 6o h~1.

The announced result holds for g in an open

subset of g{7). ]
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